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NATAS: Neural Activity Trace Aware Saliency
Guokang Zhu, Qi Wang, and Yuan Yuan, Senior Member, IEEE

Abstract—Saliency detection has raised much interest in com-
puter vision recently. Many visual saliency models have been
developed for individual images, video clips, and image pairs.
However, image sequence, one most general occasion in the
real world, is not explored yet. A general image sequence
is different from video clips whose temporal continuity is
maintained and image pairs where common objects exist. It
might contain some similar low-level properties while completely
distinct contents. Traditional saliency detection methods will fail
on these general sequences. Based on this consideration, this
paper investigates the shortcomings of the classical saliency
detection methods, which significantly limit their advantages:
1) inability to capture the natural connections among sequential
images, 2) over-reliance on motion cues, and 3) restriction to
image pairs/videos with common objects. In order to address
these problems, we propose a framework that performs the
following contributions: 1) construct an image data set as
benchmark through a rigorously designed behavioral experiment,
2) propose a neural activity trace aware saliency model to capture
the general connections among images, and 3) design a novel
measure to handle the low-level clues contained among sequential
images. Experimental results demonstrate that the proposed
saliency model is associated with a tremendous advancement
compared with traditional methods when dealing with the general
image sequence.

Index Terms—Computer vision, global contrast, machine
learning, neural activity trace, preactivation, saliency detection,
visual attention.

I. Introduction

V ISION is the most important component of the human
sensory system, which can provide an intuitive way for

us to understand the world. In the human visual system, there
is an effective attention selection mechanism. This mechanism
can drive the observers to allocate the limited perceptual
processing resources to the most important visual subsets
[1], [2]. For instance, when we open the window and look
out, we will unconsciously see the cars, pedestrians, or other
objects, while we will easily ignore the things usually treated
as background. Visual attention selection is considered as a
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Fig. 1. Saliency detection. First row: original image sequence. Second row:
ground truth labels of the corresponding images. Remaining rows: saliency
maps calculated by IT [11], RC [12], and the proposed model, respectively.

matter of course for human, but inspires a challenging task in
computer vision—saliency detection.

Saliency detection basically aims at providing the computa-
tional identification of scene regions, which are more notable
to a human observer than their surroundings. Typical examples
of saliency detection are demonstrated in Fig. 1. Reliable
saliency maps can provide a lot of useful information for
further processing without prior knowledge about the scene.
For example, it has been used for content-aware image scaling
[3], [4], image segmentation [5], [6], object recognition [7],
[8], and smart video presentation [9], [10]. Therefore, model-
ing visual saliency is considered as an important component
in computer vision, and shows an increasing interest in both
theory and practice recently.

Typical occasions of saliency detection are performed on
individual images [13]–[15], video clips [16]–[18], and image
pairs [19]. Besides these situations, there is another one that
still has not been realized, i.e., an image sequence that might
be displayed successively or observed one by one with a very
short time interval. In this case, the processing is different
from traditional models, because the information for saliency
calculation includes not only color, texture, motion, and gra-
dient, but also the connections among images. According to a
psychophysical evidence [20], when physical stimulus excite
a recipient within very short time intervals, the effects of the
previous stimulus can influence the responses aroused by the
subsequent stimulus through the biochemical traces of neural
activities. There are many typical examples of this case in
the real world, such as browsing photo albums, looking over
Google image search results, and viewing products in online
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Fig. 2. Example of the occasion focused in this paper, where the images in
the sequence will be observed one by one.

stores. Fig. 2 demonstrates an intuitive example. For this new
occasion, the key point is how to capture the effect of the
previous stimulus.1 The problem addressed in this paper is
the modeling of visual saliency on a sequence of images,
considering the neural activity traces among images.

A. Related Work

Classical saliency detection methods tackle visual attention
as a bottom-up process without prior knowledge, and choose
to employ a low-level approach to calculate local or global
contrasts of image regions with respect to their surroundings.
According to the occasion they targeted, these methods can be
roughly classified into three groups: separate-scene saliency,
dynamic saliency, and cosaliency.

Works that belong to the first group evaluate saliency
of image regions by calculating the contrasts with respect
to local neighborhoods or the entire images. They limit
their focus only on each individual image, instead of other
reference ones. Many of these methods are related with
the biologically plausible model of human visual system
introduced in [21]. For example, inspired by this model,
Itti et al. [11] first extracted multiscale features using a differ-
ence of Gaussians (DoG) approach, and then, defined saliency
by combing and normalizing these features through a center-
surround difference scheme. Walther et al. [22] modified the
method in [11] with a hierarchical recognition system. Han et
al. [5] identified attention seeds mainly by the method in [11],
and then extended these seeds to regions by a Markov random
field (MRF) model. Harel et al. [23] designed a graph-based
method, which can, first, form activation maps by normalizing
the feature maps of [11] as well as other importance maps, and
then, combine them to highlight conspicuous parts.

Besides the above-mentioned methods, many other local
contrast-based saliency detection methods have been proposed
for separate scenes, which are related strongly with purely
local analysis of image neighborhoods. Achanta et al. [24]
calculated local contrast based on a sliding local window,

1The stimulus in this paper are the images observed by subjects.

by which the Euclidean distance between the average fea-
ture vectors of the inner subregion and its outer neighbor-
hoods is calculated as the saliency value for each location.
Gao et al. [25] measured contrast on the histograms of a
series of DoG and Gabor filter responses, and determined
saliency of a location as the Kullback–Leibler (KL) divergence
between this location and its surrounding region. Hou and
Zhang [26] introduced a spectral residual model relying on
frequency domain processing. They used the difference be-
tween the log Fourier spectrum of an image and its locally
averaged version to find the innovation locations. Zhang et al.
[27] evaluated saliency using Shannon’s self-information and
pointwise mutual information under a Bayesian framework.
Seo and Milanfar [28] measured saliency based on local
steering kernels (LSK), which can capture the gradient contrast
between the examined location and its surrounding region.

Recently, global contrast-based methods, which take into
account global relations over the entire image, have an-
nounced promising results on separate scenes. For example,
Achanta et al. [29] presented a frequency tuned algo-
rithm, which can achieve globally more consistent saliency
maps by computing the global contrast between each pixel
color and the average color of the Gaussian-filtered image.
Goferman et al. [30] measured saliency based on global
dissimilarities of each image patch compared with the corre-
sponding k most similar patches in the whole image. Bruce and
Tsotsos [31] detected saliency based on the maximum infor-
mation over the complete scene, and calculated the probability
density function based on a Gaussian kernel density estimate
(KDE) in a neural circuit. Cheng et al. [12] proposed a region-
level saliency detection method based on the global contrasts
between histograms of over-segmented regions. Wang et al.
[32] tackled saliency as anomaly in an image relative to a large
image dictionary through k-nearest-neighbor (kNN) retrieval.
Liu et al. [16], [33] defined a global feature describing the
color spatial distribution, and enhanced it with the local center-
surround histogram and the multiscale contrast to extract
prominent regions through conditional random field (CRF)
learning. More recently, Perazzi et al. [13] reconsidered some
previous excellent global contrast-based features [12], [16] in
a unified way using Gaussian filters.

Dynamic Saliency detection methods are generally also
constructed on the basis of local or global analysis of contrast,
but have the additional capacity to utilize motion cues. Zhai
and Shah [17] proposed to utilize motion contrast based on the
interest point correspondences and the geometric transforma-
tions between consecutive images. Rahtu et al. [18] proposed
a saliency measure method based on a statistical framework,
which utilizes local feature contrast in illumination, color,
and motion information in a sliding window. Liu et al. [16]
extended their separate-scene saliency detection method to
detect a salient object from video clips by introducing two
dynamic salient features, i.e., the motion salient feature and
the appearance coherence feature. The motion salient feature
is defined based on the motion fields obtained by the SIFT
flow technique [34], while the second feature models the
appearance coherence of the salient objects between two
successive frames.
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Fig. 3. Negative cases for exciting methods. (a) Two images displayed with
a very short time gap. (b) Image pair without foreground objects in common.
(c) Motion map with the same speed for the whole scene caused by lens
shifting. (d) Motion map with the radiative increased speed for the scene
caused by lens zooming.

As for image pairs with some foreground objects in com-
mon, a cosaliency model [19] has been proposed. This model
is constructed as a linear combination of the saliency maps
from the separate-scene saliency feature [11], [26], and [29]
and the pair-image saliency feature, which is generated based
on comultilayer graph construction and normalized Simrank
[35] similarity computation.

B. Limitations of Existing Methods

Though various saliency detection methods have been pre-
sented in the past few years, and a laudable performance for
predicting human attentional spotlight has been achieved in
separate scenes, video clips, and image pairs, there are still
several limitations for extending these methods to successively
displayed image sequences.

Separate-scene saliency detection methods are designed for
the separate scenes. These methods consider the information
obtained only in the current image, while ignoring the connec-
tions among the examined image and the previously displayed
ones. However, it is proved that the previous stimulus can
influence the response aroused by the subsequent stimulus
[20]. Take Fig. 3(a) for example. If these two images are
successively displayed with a very short time interval, the
observer’s attention in the second image is more likely to be
allocated on the men in the white shirt, which is consistent
with the foreground white lampshades of the first scene
according to its appearance and location.

Dynamic saliency detection methods are suitable for the
circumstance where the relative velocity can be observed
easily between the salient object and the background, i.e., the
salient object is with the motion magnitude significantly larger
or smaller than the background. However, in the occasion
focused in this paper, there is typically neither a common
salient object nor a similar background in the adjacent two
images. Thus, no motion field can be obtained. Besides, as
shown in Fig. 3(c) and (d), even when two adjacent frames
present the same scene, there are still many negative cases,
where there is no significantly relative motion existing between
the salient object and background.

Cosaliency model is based on an assumption that the
common objects in image pairs are more likely to capture

Fig. 4. Summary of NATAS, which can capture the preactivation caused by
the biochemical traces during image sequence displaying.

observer’s attention. This model, therefore, works well only
when an image pair has some common foreground objects or
at least very similar foreground objects. But in most cases,
as shown in Fig. 3(b), the strict condition is hardly satisfied.
The most common circumstance for saliency detection is that
scenes are with some similar low-level properties, e.g., the
presence of some local similarities in color, texture, or shape,
instead of some objects in common.

C. Overview

To deal with the new occasion: 1) an image data set
containing sequences of images and ground truth labels is
constructed to serve as a benchmark platform in this paper,
and 2) a neural activity trace aware saliency (NATAS) model
is developed, which can capture the effect of neural activity
trace during image sequence displaying.

In order to construct a reliable data set, the collected images
are divided into blocks. The images within a block possess
connections between them, which makes the research toward
image sequence possible. Each image is then labeled by 20
subjects through a rigorously designed behavioral experiment.
As some methods simultaneously consider the salient regions
over scales, this data set also has the characteristic that it
contains images with both large and small salient regions.

The second contribution of this paper is the NATAS model
suitable for the new occasion. Fig. 4 shows the flowchart. This
model is motivated by the need for overcoming the limitations
of exiting methods and takes advantage of two components.

1) The global analysis of contrast is employed in NATAS
based on color and visual complexity cues available in
each examined image. Analyzing the global contrast has
both theoretical and practical bases. The psychological
discovery of Chen et al. [36] and Zhou et al. [37] reveals
that the global-first topological perception completely
dominates early vision. Experimental experiences also
indicate that the global contrast-based models can often
connect with consistently outstanding performance in
practice [12], [13], [29], [38].

2) The effect of the biochemical trace of neural activ-
ity is considered in NATAS and defined as preacti-
vation. The existence of such effect is proved in our
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Fig. 5. Flow chart for one block of the behavioral experiment. (a) Treatment group. (b) Control group.

behavioral experiment, and the treatment of preactivation
is the most essential difference between NATAS and the
existing works.

The rest of this paper is organized as follows. Section II
details the behavioral experiment designed to construct the
data set. Section III introduces the proposed mode. Section IV
presents the extensive experiments to prove the effectiveness
of the proposed model. Section V analyzes what is the key
factor for the proposed model, and the conclusion follows in
Section VI.

II. Neural Activity Trace in Attention

Allocation

Although there is an intuition that the foci in previous
images will effect the attention distributions in the subsequent
images, implementing this effect has not been addressed in
the literature. Is this phenomenon true only for one person or
consistently the same for anyone else? It still remains to be
answered. In this section, we will detail a rigorously designed
behavioral experiment to clarify such a phenomenon in the
context of saliency detection. At the same time, a new data
set is constructed as a benchmark for further research.

A. Behavioral Experiment

The previous observations of images will influence the
judgement of later concentration. This is also true for saliency
detection and we call the effect as neural activity trace in this
paper. To justify this point, a comparative behavioral experi-
ment is conducted to prove the rightness. Detailed introduction
is presented below.

Firstly, a data set of 240 images is constructed. These
images have a wide variety of contents and are divided into
40 blocks. Each block contains six images, with similar color
or shape for salient objects. This makes intuitive connec-
tions among them. Secondly, 40 subjects are invited in the
behavioral experiment. These 40 participants are randomly
divided into two groups. Half of them are assigned to treatment
group, which aims to construct the saliency masks for the
sequential occasion. The remaining half are assigned to control
group, who are set to collect the saliency masks for individual

images.2 The main difference between these two groups is the
ways for presenting images in the next step. After that, all the
40 participants are asked to sit in front of a 19′′ LCD screen
and keep a distance of three times the screen width. Images are
then presented to them and they are, respectively, requested to
label the salient objects with a rough drawing.

Fig. 5 shows the flow chart for the two experimental groups.
In both cases, images are presented block by block. But the
time intervals between adjacent presentations and the number
of images presented at one time are different. For the treatment
group, suppose Ie is the examined image requiring to be
labeled in a block. It is displayed for a short time duration
of 80 ms and then the salient area is immediately labeled in a
drawing board by the participant. However, before displaying
Ie, each of the previous labeled images in the same block will
rapidly flash for 80 ms again, with a 100 ms gap between
different image presentations. Once Ie has been labeled, the
participant has to press the space button of the keyboard to
view the next image in this block. If this block finishes, the
next block starts. Between two block presentations, a simple
mathematical problem will be displayed for 2000 ms. The
participant is asked to figure out the raised question within
the time interval. Through this arrangement, the participant’s
memory trace is flushed out and the next block will not be
influenced by the previous block.

As for the control group, the general procedure is similar,
except that its presentation procedure is image by image. Every
time, only the current image is displayed and no previous
ones appear. The interval between adjacent presentations is
2000 ms and during this time interval, there is an interfering
image displaying on the screen to ensure no neural activity
traces on the next image.

The time intervals (80 ms, 100 ms, and 2000 ms) set above
are not random. Instead, they are determined according to the
psychological principles. Evidences in psychology reveal that

2The concept of treatment group and control group is borrowed from
psychophysical and medical terms. A control group is treated as a base-
line measure. The control group has identical experimental items that
you are examining, with the exception that it does not receive the treat-
ment or the experimental manipulation that the treatment group receives.
Please refer to http://en.wikipedia.org/wiki/Treatment and control groups
and http://www.ncsu.edu/labwrite/il/controltreatmentgr.htm.
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Fig. 6. Comparison for the saliency masks collected in different groups.
(a) Sample images (left) with saliency masks from treatment group (middle)
and control group (right). (b) Averaged precision, recall, and F-measure bars.

the human visual system can achieve the bottom-up attention
within a very short duration (80 ms) [39], and the visual
sensory memory (or iconic memory) can last only a brief
amount of time (250–1000 ms) [40]. Therefore, the time
intervals set for the treatment group can ensure that the neural
activity traces, which are aroused by the previous images of
the same block, do not completely subside. For the control
group, the 2000 ms interval between neighboring images is
long enough to guarantee that the adjoining images do not
influence each other.

It should be noted that each block in our experiment consists
of six images. This setting is based on a psychophysical
discover, which reveals that working memory typically holds
three or four items at once [41]. Besides, as the masks drawn
by participants are rough irregular shapes, a postprocessing
program is applied to them after the completion of the behav-
ioral experiment. In this postprocessing, each salient region
labeled by a participant is reshaped by a rectangular box,
which covers the entire marked region with the minimum area.
Since each image is labeled by multiple participants, to get a
consistent ground truth, the common area covered by more
than half number of rectangles of each image in treatment
group is treated as the ultimate saliency mask for sequential
occasion. The same procedure is implemented in the control
group to obtain the saliency masks for individual images.

B. Comparative Analysis

There are visible differences between the saliency masks
obtained from two experimental groups, one of which follows
traditional labeling paradigm that treats images individually
and the other considers the previous influence on current
example. These differences can be seen from Fig. 6(a), where
the treatment group and control group generate two kinds
of saliency masks. Before further comparative analysis for
these two groups, quantitative measures should be introduced
first. Three indexes of precision, recall, and F-measure are
employed in this paper. These indexes have achieved great
popularity in saliency detection [42] and other information
retrieval community. To be specific, given an image with
pixels X = {xi} and a reference binary mask (ground truth)
G = {gi ∈ [0, 1]}, for any other mask L = {li ∈ [0, 1]} to be
evaluated, these three indexes are defined as

precision =
∑

i

gili

/∑
i

li (1)

Fig. 7. Comparison for the saliency masks collected in different half of
the treatment group. (a) Sample images with two kinds of saliency mask.
(b) Averaged precision, recall, and F-measure bars.

recall =
∑

i

gili

/∑
i

gi (2)

Fβ =
precision × recall

(1 − β) × recall + β × precision
(3)

where β is set to 0.5 according to [43].
With these three metrics, quantitative analysis is conducted

to evaluate the similarity between the labeled saliency results
of the two groups. The saliency maps from control group
are treated as references (ground truths). The results from
treatment group are to be evaluated. According to the above
introduced measures, averaged precision, recall and F-measure
can be obtained. It is clear from Fig. 6(b) that the employed
three metrics are all at a low value, which indicate their results
differ greatly (if their results are identical with each other,
the values should be one.). These further tell us that saliency
detection based on image sequence does not equal to saliency
detection of its component individual image.

C. Consistency Analysis

Another question that should be addressed is the consistency
among different participants’ responses. This can ensure the
obtained statistics are reliable and reasonable. To evaluate the
consistency, the treatment group is split into two independent
halves. Then, we identify how well the saliency masks labeled
by the first half of the participants can match those obtained
from the second half. Some visual comparisons are presented
in Fig. 7(a) for qualitative evaluation. Besides, the average
values of precision, recall, and F-measure are presented in
Fig. 7(b) to provide the quantitative results.

The comparison results indicate that the two groups of
saliency masks are highly consistent in appearances, and
the average values of precision, recall, and F-measure are
significantly high. All these results together can prove that the
collected saliency masks are highly consistent. This suggests
that, using these saliency masks as the ground truth, is appro-
priate and the obtained statistics are reliable and reasonable.
The same analysis is conducted on the control group and there
follows a similar result.

D. Summary

In previous subsections, we have constructed a benchmark
dataset containing blocks of image sequences, and conducted
a behavioral experiment to prove that detecting saliency on
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image sequence does not equal to treating the images individ-
ually. This is because there are neural activity traces among the
sequential images. If this connection is cut off by treating the
images separately, the obtained result will be different from
what it should be. Traditional methods are not suitable for this
new occasion because they do not consider the neural activity
traces. To get a more reasonable saliency detection result, the
problem of image sequence is explored in this paper. Detailed
discussion will be presented in the next section.

III. NATAS Model

This section details the NATAS model specifically designed
for tackling image sequences. This model detects saliency
at region level, i.e., estimates the probability of each over-
segmented region being salient, according to: 1) the global
contrast in the scene, as well as 2) the preactivation caused by
those salient regions in the previous images.

A. Preprocessing

For the preprocessing, an excellent over-segmentation
method [44] is employed to segment the image into distinct
regions. Since the Gestalt movement in psychology, it is
widely recognized that perceptual grouping is fundamental
to the process of human visual perception [19], [45]. Some
experimental research on early visual process [36], [39] also
proved that the first information that can be distinguished by
the biological vision systems is the rough shape of object.
Therefore, our saliency detection is conducted on the region-
level instead of the pixel-level. It is reasonable to believe
that this preprocessing is consistent with the characteristics
of human visual system.

B. Saliency Assignment

As mentioned before, in the new saliency detection occa-
sion, the attention allocated to a region is dependent on the
global contrast in the scene, as well as the similarities between
this region and those salient regions in previous images.
Therefore, in NATAS, the saliency value S(ri,k) assigned to
region ri,k, the ith segmented area in the kth image of a
sequence, is defined as

S(ri,k) = U(ri,k) · exp[σ2
v · V (ri,k)] · 1

Z
(s)
k

(4)

where the first component U(ri,k) denotes the global contrast
between region ri,k and others from the same scene, while the
second part V (ri,k) denotes the preactivation degree between
ri,k and those salient regions in the previous images detected
before. Z

(s)
k is the normalization factor, which linearly projects

the saliency values to the range [0,1].
In image sequences, the preactivation is observed of higher

significance and with more discriminative power. Therefore,
in this formulation, an exponential function is employed to
emphasize V (ri,k) with a parameter σv. σv is a scaling factor
that controls the strength of V (ri,k), and is experimentally fixed
to two. Besides, it should be noted that, since there is no neural
activity traces for the first image in a sequence, exp[σ2

v ·V (ri,k)]
are fixed to one for all the corresponding regions.

C. Global Visual Contrast

It is widely believed that the visual system preferentially
responses to the high contrast stimulus [12], [46]. In this paper,
two visual cues, color and visual complexity, are used for
global contrast analyzing.

Color-based contrast: In existing region-based saliency de-
tection methods [12], [13], [19], the color contrast between two
regions is measured by directly calculating: 1) the Euclidean
distances of colors in all positions, or 2) the chi-square
distance of color histograms. Assume there are N pixels
and M regions in an image, and Z dimensions in color
histogram. The first operation will take O(N2) time, which is
computationally too expensive for a common web image. The
second operation will take O(N +Z×M2) time, which greatly
reduces the computation if Z is not a large number. However,
a small Z has the disadvantage that the discriminative ability
of color is severely reduced. Therefore, a more efficient but
statistically convincing measurement will be beneficial. Since
the distributions of colors are independent in image regions,
and are truly not normal most of the time [47], [48], the
Student t-value is employed in this paper. More specifically,
the color contrast between region ri and rj is defined as

Dc(ri, rj) = ‖μi − μj‖2 · (
σ2

i

ni

+
σ2

j

nj

)−
1
2 (5)

where μi and μj denote the average colors of region ri and
rj , respectively, σ2

i and σ2
j are their variances, and ni and nj

are the total numbers of pixels in the corresponding regions.
This measurement takes O(N + M2) time. As an image will
be segmented to only around 20 regions in our paper, the
computational efficiency is improved to approximately O(N).

Visual complexity-based contrast: Visual complexity is an-
other important cue that could play an important role in
guiding human attention [31]. For this visual cue, a measure
derived from information theory is employed in our paper, i,e,
entropy. Based on entropy estimation for color distribution,
the contrast of visual complexity De(ri, rj) between region ri

and rj can be simply defined as

De(ri, rj) = [H(ri) − H(rj)]2 (6)

where H(ri) represents the entropy of region ri, which can be
easily estimated by

H(ri) =
nc,i∑
p=1

f (cp,i) · log2 f (cp,i) (7)

where nc,i is the number of colors contained in ri. cp,i denotes
the pth color in ri. f (cp,i) is the frequency of cp,i in this region.

Contrast integration: As a necessary step, a final measure
for the contrast between two regions should be defined based
on the employed visual cues. We assume that the measures for
the contrast of color and visual complexity are independent;
hence, they could be efficiently integrated as

Dr(ri, rj) = Dc(ri, rj) · exp[σ2
e · De(ri, rj)]. (8)

As De(ri, rj) is found to be associated with a larger range
of values than Dc(ri, rj), an exponential function is also
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employed here to normalize De(ri, rj) with a parameter σe,
where σe is experimentally fixed to 1/

√
6.

Spatially weighted global contrast: After defining the con-
trasts between local regions, the global contrast of each region
can be obtained by calculating its contrast to all other regions
in the whole image. In addition, as stated in [12] and [13]
that spatial relationship is also an important factor in saliency
detection, therefore, a spatial weighting term is also introduced
here. More specifically, the spatially weighted global contrast
for region ri is defined as

U(ri) =
∑
j �=i

w
(u)
ij · Dr(ri, rj) · φ

(u)
j (9)

w
(u)
ij =

1

Z
(u)
i

· exp[−σ2
s · Ds(ri, rj)]. (10)

Here, φ
(u)
j = nj is used to emphasize the contribution of

larger region. This is a common setting for the global contrast-
based saliency detection [12], [13], which meets the global-
first topological perception rule [36], [37]. w

(u)
ij is the spatial

weighting term which can increase the contributions of regions
closer to ri. Ds(ri, rj) is the spatial distance between the
centroids of ri and rj . σs is employed to control the strength
of w

(u)
ij and is set to

√
0.4 in all our experiments. Z

(u)
i is the

normalization factor ensuing
∑

j �=i w
(u)
ij = 1.

D. Preactivation

The most essential difference between NATAS and the
existing works is the treatment for preactivation. The proposed
model takes into account the unevenly distributed preactiva-
tions in the target scene, while the existing works have not
yet considered this factor. Obviously, in the case that all the
images in a sequence are presented only for a very short
duration, only the salient regions in the previous images are
illuminated by the attentional spotlight, and will effect the
observers’ attention in the subsequent images. Besides, the
biochemical traces of neural activities will naturally subside
over time. In this paper, all these characteristics are well
integrated in the definition of preactivations

V (ri,k) =
k−1∑

q=max(0,k−L)

∑
j

w
(v)
ij · Dr(ri,k, rj,q)−1 · φ

(v)
ij (11)

w
(v)
ij =

1

Z
(v)
i

· exp[−σ2
v · (k − q)2 · Ds(ri,k, rj,q)] (12)

φ
(v)
ij = S(rj,q) · min(ni, nj)

max(ni, nj)
(13)

where ri,k denotes the ith region in the target image Ik, and
rj,q denotes the jth region in the previous image Iq. L is
the maximum number of previous images taken into account.
The appreciative value of L is empirically determined as
two through a quantitatively comparative analysis, which is
described in detail in Section V-B. w

(v)
ij is the time-spatial

weighting term, which is introduced to incorporate the time
cue (k − q) and the spatial information Ds(ri,k, rj,q) into the
definition of V (ri,k), and is normalized by Z

(v)
i . φ

(v)
ij is used

to emphasize the contributions of the regions that are with

the areas more similar to ri,k, and are with the larger saliency
values detected before.

IV. Results

This section firstly specifies the quantitative indicators pop-
ular in saliency detection literatures, and then evaluates the
performance of the proposed NATAS model on the constructed
data set.

A. Evaluation Measure

In saliency detection works, precision and recall are two
major quality indicators for the detected results. Precision
measures the proportion of positive detected salient regions
in the entire detected regions, while recall measures the
percentage of correctly assigned salient regions in relation to
the truly salient regions according to the ground truth.

Precision and recall are often mutually antagonistic, i.e.,
an algorithm emphasizing on high recall often tends to select
larger salient regions with the sacrificing of precision rate, and
vice versa. Therefore, these two measures are often considered
together. In practice, the precision–recall curve is popular in
capturing the tradeoff between precision and recall. Besides,
a single indicator, F-measure [43], which is a harmonic mean
for precision and recall, is also important in saliency detection.
The definitions of precision, recall, and F-measure are already
shown in Section II-B. In order to calculate the statistical curve
and F-measure, we binarize the produced saliency maps under
different thresholds. The thresholds used in all our experiments
are 21 fixed value, i.e., [0 : 0.05 : 1] × 255.

B. Performance

In order to verify the effectiveness of NATAS, 14 state-of-
the-art saliency detection methods are selected as the baselines
according to four principles: recency, prevalence, variety,
and relevance. These competitive methods include: contrast
determination filter-based saliency (AC [24]), local informa-
tion maximization-based saliency (AIM [31]), context-aware
saliency (CA [30]), frequency-tuned saliency (FT [29]), graph-
based visual saliency (GB [23]), histogram-based saliency
(HC [12]), extended contrast sensitivity function-based
saliency (IM [49]), center-surround difference-based saliency
(IT [11]), spatiotemporal saliency (LC [17]), region-level
saliency (RC [12]), Bayesian surprise-based saliency (SEG
[18]), local self-resemblance-based saliency (SeR [28]), spec-
tral residual-based saliency (SR [26]), and natural statistics-
based saliency (SUN [27]).

The code for NATAS is implemented in MATLAB. The
implementation of IT used here is a SaliencyToolbox.3 This
implementation is more compact while contains the core
functionality for the original code in [11], and is approved
in Itti’s project webpage.4 As for LC, we have not found
the authors’ implementation, and the code used here is im-
plemented by Cheng et al. [12].5 For the other 11 methods,

3http://www.saliencytoolbox.net/
4http://ilab.usc.edu/toolkit/downloads.shtml
5http://cg.cs.tsinghua.edu.cn/people/∼cmm/
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Fig. 8. Quantitative comparison between NATAS and the competitive methods representing the state-of-the-art. (a) and (b) Precision-recall curves.
(c) Averaged precision, recall, and F-measure bars.

Fig. 9. Visual comparison of saliency maps. First column: original image sequence in a block. Second column: ground truth labels of the corresponding
images. Remaining columns: saliency maps calculated by CA [30], GB [23], RC [12], SEG [18], SeR [28], and the saliency maps calculated by NATAS,
respectively.

we used the authors’ implementations downloaded from their
homepages.

From Fig. 8(a) and (b), the precision-recall curves show
that NATAS clearly outperforms AC, AIM, FT, HC, IM, IT,
LC, RC, SEG, SeR, SR, and SUN. Compared with these 12
methods, the proposed model can yield saliency maps with
higher accuracy at the same recall rate, or detect more truly
salient regions at the same precision rate. Besides, we can
observe that the proposed method dominates CA and GB most
of the time until a high recall rate is reached. However, the
unilateral emphasis on high recall rate is not very meaningful
in practical applications. The more appropriate choice should
emphasize on both precision and recall rate in compromise
[43]. In this case, the averaged precision rate, recall rate, and
F-measure value in Fig. 8(c) can provide more discriminative
clues. This figure indicates that, NATAS has the obvious
advantages compared with others.

Fig. 9 presents some visual comparison for the saliency
detection results of the top five of the 14 aforementioned
competitive methods and NATAS. As can be seen, in the
saliency maps produced by the proposed method: 1) the salient
area can be distinguished with the background much easier
than others, and 2) the detected salient regions are much more
consistent with the ground truths than the other competitors.
All these comparison results are sufficient to demonstrate that,
the proposed method is indeed a more suitable choice for the
detection of visually saliency in image sequences.

V. Discussion

As presented in Section IV, there is a tremendous advance-
ment when taking the global contrast and the preactivation into
account. In this section, we will evaluate the two components
independently.
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Fig. 10. Quantitative comparison between the restricted NATAS and the state-of-the-art methods on the data set constructed by Achanta et al. [29]. (a) and
(b) Precision–recall curves. (c) Averaged precision, recall, and F-measure bars.

A. Global Contrast Measurement

In order to further validate the effectiveness of the proposed
global contrast, the NATAS model is evaluated on separate
scenes without preactivations. A publicly available dataset
containing 1000 images [24] is employed. This data set is
reported to achieve great popularity in saliency detection [12],
[13]. Each image in this data set contains one or several salient
objects, and has a manually-labeled ground truth.

Fig. 10 demonstrates the results. As can be seen from the
precision–recall curves [presented in Fig. 10(a) and (b)], it is
manifest that the restricted NATAS, which is based only on
the proposed measure of global contrast, can also outperform
AC, AIM, CA, FT, GB, HC, IM, IT, LC, SEG, SeR, SR, and
SUN in separate scenes. These curves in together indicate that,
the proposed global contrast measurement can help NATAS
to locate salient regions more accurate than these 13 exiting
methods.

However, as can be seen in Fig. 10(b) that there are several
crossovers between the curves of the restricted NATAS and
RC. In such a case, the precision–recall curves cannot provide
discriminative clues to support the comparative analysis for
these two methods. However, as discussed in Section IV-B,
the F-measure can help to provide more intuitive information.
The corresponding results are demonstrated in Fig. 10(c). It is
manifest that the restricted NATAS clearly dominates all the
other methods on this indicator. As a summary, it is reasonable
to believe that the proposed global contrast measure has made
an important contribution in the advancement of NATAS.

B. Preactivation Consideration

In our experiment, the length of image sequences is fixed
to six. However, does the proposed model have the ability to
capture all the effects of the biochemical traces in an image
sequence? Or, how long is the scope that NATAS can capture
these effects caused by the previous images? This subsection
will answer these questions by comparing the performances
of NATAS under different settings of L.

As can be seen from Fig. 11, the worst performance is
associated with the case of setting L = 0. In this case,
no preactivation is considered. Then, with the increasing of
L, which means that the effect of preactivation is gradually
incorporated in the model, the performance will increasingly

Fig. 11. Comparison of different settings of L. (a) Precision–recall curves.
(b) Averaged precision, recall, and F-measure bars.

Fig. 12. Failure cases. The red rectangles illustrate the truly salient regions
labeled by the users during image sequence displaying, and the gray scale
images are the saliency maps detected by NATAS. For the first image
sequence, the truly salient regions are mainly white, but the detected saliency
maps fail in the last five images. Similarly, the truly salient regions in the
second image sequence are mainly purple, but the detected saliency maps fail
in the third–fifth images.

improve until L reaches two. After that, setting higher L can-
not get a better performance. Instead, the computational cost is
more expensive. These results indicate that the preactivation is
indeed an important factor in the new saliency detection occa-
sion. However, the proposed model is at most able to capture
the preactivations aroused by the last two previous images.

VI. Conclusion

There is a common sense that our attention will be influ-
enced by what we observed shortly before. Some psychophys-
ical researches [20], [41] can provide the theoretical basis for
this intuition. However, detecting saliency in such an occasion
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has not yet been addressed in computer vision. Directly em-
ploying traditional methods on successively displayed image
sequences is not appropriate, because they do not consider
the neural activity trace that actually exists in human vision
system.

In this paper:

1) A data set for the new saliency detection occasion is
constructed through a rigorously designed behavioral
experiment. The images in the dataset are organized
as blocks of image sequence. This makes the research
toward neural activity trace possible.

2) A saliency model NATAS is designed specifically for the
new occasion. This model can utilize the global contrast-
based information, as well as the preactivation caused by
previous images.

Experimental results on the constructed dataset show that,
in the new saliency detection occasion, the proposed NATAS
model can predict the salient regions with greater accuracy
than the other 14 mainstream methods. Furthermore, a quan-
titatively analysis indicates that both the two components of
the proposed model have made significant contributions in the
advancement of NATAS.

As the performance on the constructed data set is still far
from satisfying, there are many remaining questions to be
investigated. For example, are there other cues in images that
could be utilized to capture the effect of the neural activity
traces? How can these cues be modeled? Besides, the failure
cases of the proposed method shown in Fig. 12 illustrate that
there is also a challenge associated with the tradeoff between
the single-scene clues and the neural activity traces. These
issues might be the key points in future work.
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